Multi-horizon uniform superior predictive ability revisited: A size-exploiting and consistent test

Monschang, Verena; Trede, Mark; Wilfling, Bernd

Arbeitspapier / Working Paper | Peer reviewed

Zusammenfassung

Quaedvlieg (2021, Journal of Business & Economic Statistics) proposes a uniform Superior Predictive  Ability (uSPA) test for comparing forecasts across multiple horizons. The procedure is based on a ’minimum Diebold-Mariano’ test statistic, and asymptotic critical values are obtained via bootstrapping. We show, theoretically and via simulations, that Quaedvlieg’s test is subject to massive size distortions. In this article, we establish several convergence results for the ’minimum Diebold-Mariano’ statistic, revealing that appropriate asymptotic critical values are given by the quantiles of the standard normal distribution. The uSPA test modified this way (i) always keeps the nominal size, (ii) is size-exploiting along the boundary that separates the parameter subsets of the null and the alternative uSPA hypotheses, and (iii) is consistent. Based on the closed skew normal distribution, we present a procedure for approximating the power function and demonstrate the favorable finite-sample properties of our test. In an empirical replication, we find that Quaedvlieg’s (2021) results on uSPA comparisons between direct and iterative forecasting methods are statistically inconclusive.

Details zur Publikation

ErscheinungsortMünster
Titel der ReiheCQE Working Papers
Nr. in Reihe106/2023
StatusVeröffentlicht
Veröffentlichungsjahr2023 (17.11.2023)
Sprache, in der die Publikation verfasst istEnglisch
StichwörterForecast evaluation; Joint-hypothesis testing; Stochastic dominance; Closed skew normal distribution

Autor*innen der Universität Münster

Monschang, Verena
Lehrstuhl für Volkswirtschaftslehre, insbesondere empirische Wirtschaftsforschung
Trede, Mark
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)