Lost in Transformation: Rediscovering LLM-Generated Campaigns in Social Media

Grimme, Britta; Pohl, Janina; Winkelmann, Hendrik; Stampe, Lucas; Grimme, Christian

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

This paper addresses new challenges of detecting campaigns in social media, which emerged with the rise of Large Language Models (LLMs). LLMs particularly challenge algorithms focused on the tempo- ral analysis of topical clusters. Simple similarity measures can no longer capture and map campaigns that were previously broadly similar in con- tent. Herein, we analyze whether the classification of messages over time can be profitably used to rediscover poorly detectable campaigns at the content level. Thus, we evaluate classical classifiers and a new method based on siamese neural networks. Our results show that campaigns can be detected despite the limited reliability of the classifiers as long as they are based on a large amount of simultaneously spread artificial content.

Details zur Publikation

Herausgeber*innenCeolin, Davide; Caselli, Tommaso; Tulin, Marina
BuchtitelDisinformation in Open Online Media (Band 5)
Seitenbereich72-87
Artikelnummer6
VerlagSpringer
ErscheinungsortAmsterdam, Niederlande
Titel der ReiheLecture Notes in Computer Science
Nr. in Reihe14397
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
Konferenz5th Multidisciplinary International Symposium (MISDOOM 2023), Amsterdam, Niederlande (Königreich der)
ISBN978-3-031-47895-6
DOI10.1007/978-3-031-47896-3_6
StichwörterSocial Media; Campaign Detection; Large Language Models; Siamese Neural Networks

Autor*innen der Universität Münster

Grimme, Christian
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Lütke-Stockdiek, Janina Susanne
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Stampe, Lucas
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Winkelmann, Hendrik
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)