Integration of colloidal quantum dots with nanophotonic circuits

Eich A; Spiekermann TC; Sommer L; Gehring H; Bankwitz JR; Preuss JA; Kern J; Vasconcellos SMd; Bratschitsch R; Pernice WHP; Schuck C

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

The integration of nano-scale quantum emitters with nano-photonic circuits is a prerequisite for a broad range of quantum technologies, benefitting quantum communication, quantum sensing or quantum information processing. However, the assembly of single emitters with high positioning accuracy in large-scale arrays and their efficient interfacing with photonic quantum channels constitutes a major challenge. Here, we show how single colloidal core-shell quantum dots (CQDs) are embedded in photonic integrated circuits that allow for individual excitation and photoluminescence collection. By utilizing finite-difference time-domain simulations, we design nanophotonic interfaces with high coupling efficiencies between CQDs and single-mode optical waveguides. Here, we utilize a tantalum pentoxide (Ta2O5) on insulator nanophotonic platform that enables integrated optics experiments at the single-photon level due to low intrinsic material fluorescence and low-loss waveguiding. We employ a PMMA thin film for patterning hundreds of nanoscale apertures that are precisely aligned to prefabricated nanophotonic devices and transfer a solution of CdSeTe/ZnS CQDs diluted in decane into the apertures. The CQDs are positioned with 50 nm accuracy with respect to optical waveguides. Highly efficient 3D fiber-chip interfaces produced from a polymer in direct laser writing allow us to characterize the CQDwaveguide coupling and assess the spectral characteristics of the collected photoluminescence. Moreover, we record the second order autocorrelation function g2(τ) of the photoluminescence signal, which shows photon antibunching indicative of individual quantum emitters. Addressing individual CQDs via independent waveguide channels and a reproducible integration approach that extends to larger numbers of devices provides a novel perspective for realizing quantum technology with solution-processible single-photon emitters.

Details zur Publikation

Herausgeber*innenSPIE
BuchtitelQuantum Nanophotonic Materials, Devices, and Systems 2021 (Band 11806)
Seitenbereich15-21
VerlagSPIE
ErscheinungsortSan Diego
StatusVeröffentlicht
Veröffentlichungsjahr2021
KonferenzSPIE 2021, San Diego, Vereinigte Staaten
DOI10.1117/12.2594694
Link zum Volltexthttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11806/1180607/Integration-of-colloidal-quantum-dots-with-nanophotonic-circuits/10.1117/12.2594694.full
StichwörterWaveguides;Nanophotonics;Quantum dots;Confocal microscopy;Tantalum;Interfaces;Quantum communications

Autor*innen der Universität Münster

Bankwitz, Julian Rasmus
Physikalisches Institut (PI)
Bratschitsch, Rudolf
Professur für Experimentalphysik - Festkörper-Quantenoptik/Nanophotonik (Prof. Bratschitsch)
Eich, Alexander
Professur für Experimentelle Physik (Prof. Schuck)
Gehring, Helge
Professur für Experimentalphysik mit der Ausrichtung Physik responsiver Nanosysteme (Prof. Pernice)
Michaelis de Vasconcellos, Steffen
Professur für Experimentalphysik - Festkörper-Quantenoptik/Nanophotonik (Prof. Bratschitsch)
Pernice, Wolfram
Professur für Experimentalphysik mit der Ausrichtung Physik responsiver Nanosysteme (Prof. Pernice)
Preuß, Johann Adrian
Professur für Experimentalphysik - Festkörper-Quantenoptik/Nanophotonik (Prof. Bratschitsch)
Schuck, Carsten
Professur für Experimentelle Physik (Prof. Schuck)
Sommer, Lisa
Professur für Experimentelle Physik (Prof. Schuck)
Spiekermann, Tobias Christian
Physikalisches Institut (PI)