An Approximate AKE Principle for Metric Valued Fields [Ein approximatives AKE Prinzip für metrisch bewertete Körper]

Hils, Martin; Ludwig, Stefan Marian

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

We study metric valued fields in continuous logic, following Ben Yaacov’s approach, thus working in the metric space given by the projective line. As our main result, we obtain an approximate Ax-Kochen-Ershov principle in this framework, completely describing elementary equivalence in equicharacteristic 0 in terms of the residue field and value group. Moreover, we show that, in any characteristic, the theory of metric valued difference fields does not admit a model-companion. This answers a question of Ben Yaacov

Details zur Publikation

Name des Repositoriumsarxiv.org
Artikelnummer2208.10186
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttps://arxiv.org/pdf/2208.10186.pdf
Stichwörtervalued field; model theory; metric structure; Ax-Kochen-Ershov principle

Autor*innen der Universität Münster

Hils, Martin
Professur für Mathematische Logik (Prof. Hils)