Accelerating Finite-Difference Frequency-Domain Simulations for Inverse Design Problems in Nanophotonics using Deep Learning

Schulte L; Butz M; Becker M; Risse B; Schuck C

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Inverse design of nanophotonic devices becomes increasingly relevant for the development of complex photonic integrated circuits. Electromagnetic first-order simulations contribute the overwhelming computational cost to the optimization routines in established inverse design algorithms, requiring more efficient methods for enabling improved and more complex design process flows. Here we present such a method to predict the electromagnetic field distribution for pixel-discrete planar inverse designed structures using deep learning. Our model is able to infer accurate predictions used to initialize a conventional Finite Difference Frequency-Domain-algorithm and thus lowers the time required for simulating the electromagnetic response of nanophotonic device layouts by about 50 %. We demonstrate the applicability of our deep learning method for inverse design of photonic integrated powersplitters and mode converters and we highlight the possibility of exploiting previous learning results in subsequent design tasks of novel functionalities via finetuning on reduced data sets, thus improving computational speed further.

Details zur Publikation

FachzeitschriftJournal of the Optical Society of America B
Jahrgang / Bandnr. / Volume41
Ausgabe / Heftnr. / Issue4
Seitenbereich1039-1046
StatusVeröffentlicht
Veröffentlichungsjahr2024 (25.03.2024)
DOI: 10.1364/JOSAB.506159
Link zum Volltexthttps://preprints.opticaopen.org/articles/preprint/Accelerating_Finite-Difference_Frequency-Domain_Simulations_for_Inverse_Design_Problems_in_Nanophotonics_using_Deep_Learning/24147402
StichwörterInverse design, nanophotonics, deep learning, machine learning, fdfd, bicgstab,

Autor*innen der Universität Münster

Becker, Marlon
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Butz, Marco
Professur für Experimentelle Physik (Prof. Schuck)
Risse, Benjamin
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Schuck, Carsten
Professur für Experimentelle Physik (Prof. Schuck)
Schulte, Lukas
Physikalisches Institut (PI)