Lithium ion battery electrolyte degradation of NMC622||AG and NMC811||AG+SiOx cells using chromatographic analytical techniques

Kessen, Dennis; Fehlings, Nick; Lechtenfeld, Christian-Timo; van Wickeren, Stefan; Winter, Martin; Nowak, Sascha; Wiemers-Meyer, Simon

Poster | Peer reviewed

Zusammenfassung

Poster Abstract PhD Day 22.09.2023 Lithium ion battery electrolyte degradation of NMC622||AG and NMC811||AG+SiOx cells using chromatographic analytical techniques Dennis Kessena,*, Nick Fehlingsa, Christian Lechtenfelda, Stefan van Wickerena, Martin Wintera,b, Sascha Nowaka, Simon Wiemers-Meyera a University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany b Helmholtz-Institute Münster, IEK-12, FZ Jülich, Corrensstraße 46, 48149 Münster, Germany One major challenge of lithium ion batteries (LIBs) is the degradation of the cell components during operation and storage which reduces both storage- and cycle lifetime. The so-called aging is significantly related to the decomposition of the liquid electrolyte, which is in contact to every constituent of the LIB.[1] It is manifested by electrolyte consumption, gas formation and ultimately drying out of the cell. Besides formation of the solid electrolyte interphase, ring-opening of the cyclic ethylene carbonate and subsequent reactions with linear carbonates lead to the formation of oligomeric decomposition species.[2] Thermal and electrochemical instability of the conducting salt LiPF6 further lead to hydrolysis, and hence the formation of potentially toxic organophosphates and organofluorophosphates.[3] Gas, liquid and ion chromatography (GC, LC, IC) with hyphenation to high resolution mass spectrometry (HRMS) are established methods for the structural analysis of electrolytes and their decomposition products.[4] In this study, 1 Ah pouch cells (Li-FUN Technology Ltd., China) with the cell chemistries NMC622||AG and NMC811||AG+SiOx (20 %) were analysed after formation and calendric aging at 60 °C with 100 % state of charge. Mixtures of vinylene carbonate, fluoroethylene carbonate and lithium bis(oxalato)borat were used in addition to the baseline electrolyte EC/EMC 3/7 (w/w) % + 1M LiPF6. By using GC, LC and IC, a comprehensive qualitative and quantitative analysis of permanent gases as well as ionic and non-ionic decomposition species was obtained. [1] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Journal of Power Sources 2005, 147, 269. [2] J. Henschel, C. Peschel, S. Klein, F. Horsthemke, M. Winter, S. Nowak, Angewandte Chemie International Edition 2020, 59, 6128. [3] S. Nowak, M. Winter, Journal of The Electrochemical Society 2015, 162, A2500-A2508. [4] Y. P. Stenzel, F. Horsthemke, M. Winter, S. Nowak, Separations 2019, 6, 26. ​​​​​​​

Details zur Publikation

StatusVeröffentlicht
Veröffentlichungsjahr2023 (22.09.2023)
Sprache, in der die Publikation verfasst istEnglisch
Konferenz1st #BatteryCityMünster PhD-Day, Münster , Deutschland
StichwörterLithium ion battery; Electrolyte aging; Permanent gases

Autor*innen der Universität Münster

Fehlings, Nick
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Kessen, Dennis
Fachbereich 12 Chemie und Pharmazie (FB12)
Lechtenfeld, Christian-Timo
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Nowak, Sascha
Münster Electrochemical Energy Technology Battery Research Center (MEET)
van Wickeren, Stefan
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Wiemers-Meyer, Simon
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Winter, Martin
Münster Electrochemical Energy Technology Battery Research Center (MEET)