Knockout of the Cardiac Transcription Factor NKX2-5 Results in Stem Cell-Derived Cardiac Cells with Typical Purkinje Cell-like Signal Transduction and Extracellular Matrix Formation

Disse, Paul; Aymanns, Isabel; Muecher, Lena; Sandmann, Sarah; Varghese, Julian; Ritter, Nadine; Strutz-Seebohm, Nathalie; Seebohm, Guiscard; Peischard, Stefan

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the working myocardium, the pace-making cells in the sinoatrial node (SAN) and the conduction system cells in the AV-node, the His-bundle or the Purkinje fibres. Tissue-engineering approaches aim to generate hiPSC-derived cardiac tissues for disease modelling and therapeutic usage with a significant improvement in the differentiation quality of myocardium and pace-making cells. The differentiation of cells with cardiac conduction system properties is still challenging, and the produced cell mass and quality is poor. Here, we describe the generation of cardiac cells with properties of the cardiac conduction system, called conduction system-like cells (CSLC). As a primary approach, we introduced a CrispR-Cas9-directed knockout of the NKX2-5 gene in hiPSC. NKX2-5-deficient hiPSC showed altered connexin expression patterns characteristic for the cardiac conduction system with strong connexin 40 and connexin 43 expression and suppressed connexin 45 expression. Application of differentiation protocols for ventricular- or SAN-like cells could not reverse this connexin expression pattern, indicating a stable regulation by NKX2-5 on connexin expression. The contraction behaviour of the hiPSC-derived CSLCs was compared to hiPSC-derived ventricular- and SAN-like cells. We found that the contraction speed of CSLCs resembled the expected contraction rate of human conduction system cells. Overall contraction was reduced in differentiated cells derived from NKX2-5 knockout hiPSC. Comparative transcriptomic data suggest a specification of the cardiac subtype of CSLC that is distinctly different from ventricular or pacemaker-like cells with reduced myocardial gene expression and enhanced extracellular matrix formation for improved electrical insulation. In summary, knockout of NKX2-5 in hiPSC leads to enhanced differentiation of cells with cardiac conduction system features, including connexin expression and contraction behaviour.

Details zur Publikation

FachzeitschriftInternational Journal of Molecular Sciences (IJMS) ( Int J Mol Sci)
Jahrgang / Bandnr. / Volume24
Ausgabe / Heftnr. / Issue17
Artikelnummer13366
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3390/ijms241713366
Link zum Volltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487652/
StichwörterhiPSC; cardiac conduction system; NKX2-5; connexin; collagen; CrispR-Cas9

Autor*innen der Universität Münster

Aymanns, Isabel
Institut für Genetik von Herzerkrankungen (IfGH)
Mücher, Lena
Institut für Genetik von Herzerkrankungen (IfGH)
Peischard, Stefan
Institut für Genetik von Herzerkrankungen (IfGH)
Ritter, Nadine
Institut für Genetik von Herzerkrankungen (IfGH)
Sandmann-Varghese, Sarah
Institut für Medizinische Informatik
Seebohm, Guiscard
Institut für Genetik von Herzerkrankungen (IfGH)
Strutz-Seebohm, Nathalie
Institut für Genetik von Herzerkrankungen (IfGH)
Varghese, Julian
Institut für Medizinische Informatik