ML2-enabled Condition-based Demand, Production, Inventory, and Maintenance Planning

Wesendrup, Kevin; Hellingrath, Bernd

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Production planning and control is pivotal to meeting customer demand and maximizing profit. At the same time, machine breakdowns compromise these goals, which can be tackled with a good maintenance strategy. Here, advances in condition-based maintenance and prognostics and health management allow predicting the health state of production machines through sensor data and prescribing optimal demand, production, inventory, and maintenance plans. Here, machine learning (ML) is promising for accurate health predictions using sensor data and decision-making in complex, highly dynamic production environments. Thus, in this work, two ML algorithms are applied. First, a data-driven regression algorithm predicts the health of a machine. This forecast is forwarded to a reinforcement learning algorithm (i.e. proximal policy optimization, recently made famous by its application within ChatGPT) to optimize demand, production, inventory, and maintenance plans. A computational study shows excellent performances of the ML-based health prediction and planning algorithms, which surpass traditional maintenance strategies.

Details zur Publikation

Herausgeber*innenInternational Federation of Automatic Control
BuchtitelProceedings of the IFAC World Congress 2023
Seitenbereich7182-7187
VerlagElsevier
ErscheinungsortYokohama
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
KonferenzIFAC World Congress 2023, Yokohama, Japan
StichwörterPrognostics & health management; Production planning and control; Intelligent manufacturing systems

Autor*innen der Universität Münster

Hellingrath, Bernd
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
Wesendrup, Kevin
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)