U-Net-Based Segmentation of Current Imaging Biomarkers in OCT-Scans of Patients with Age Related Macular Degeneration.

Yildirim K; Al-Nawaiseh S; Ehlers S; Schießer L; Storck M; Brix T; Eter N; Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. In this work, the non-invasive imaging technique spectral domain optical coherence tomography (SD-OCT) is used to acquire retinal images, which are then analyzed using deep learning techniques. The authors trained a convolutional neural network (CNN) using 1300 SD-OCT scans annotated by trained experts for the presence of different biomarkers associated with AMD. The CNN was able to accurately segment these biomarkers and the performance was further enhanced through transfer learning with weights from a separate classifier, trained on a large external public OCT dataset to distinguish between different types of AMD. Our model is able to accurately detect and segment AMD biomarkers in OCT scans, which suggests that it could be useful for prioritizing patients and reducing ophthalmologists' workloads.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume302
Seitenbereich947-951
StatusVeröffentlicht
Veröffentlichungsjahr2023 (18.05.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI230315
StichwörterHumans; Algorithms; Macular Degeneration; Neural Networks, Computer; Tomography, Optical Coherence; Biomarkers

Autor*innen der Universität Münster

Al-Nawaiseh, Sami
Klinik für Augenheilkunde
Brix, Tobias
Institut für Medizinische Informatik
Ehlers, Sophia Friederike
Klinik für Augenheilkunde
Eter, Nicole
Klinik für Augenheilkunde
Storck, Michael
Institut für Medizinische Informatik
Varghese, Julian
Institut für Medizinische Informatik
Yildirim, Mustafa Kemal
Institut für Medizinische Informatik