Blood Vessel Segmentation Using U-Net for Glaucoma Diagnosis with Limited Data.

Schiesser L; Storp JJ; Yildirim K; Varghese J; Eter N

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Glaucoma is one of the leading causes of blindness worldwide. Therefore, early detection and diagnosis are key to preserve full vision in patients. As part of the SALUS study, we create a blood vessel segmentation model based on U-Net. We trained U-Net on three different loss functions and used hyperparameter tuning to find their optimal hyperparameters for each loss function. The best models for each of the loss functions achieved an accuracy of over 93%, Dice scores around 83% and Intersection over Union scores over 70%. They each identify large blood vessels reliably and even recognize smaller blood vessels in the retinal fundus images and thus pave the way for improved glaucoma management.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume302
Seitenbereich581-585
StatusVeröffentlicht
Veröffentlichungsjahr2023 (18.05.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI230209
StichwörterHumans; Blindness; Fundus Oculi; Glaucoma

Autor*innen der Universität Münster

Eter, Nicole
Klinik für Augenheilkunde
Storp, Jens Julian
Klinik für Augenheilkunde
Varghese, Julian
Institut für Medizinische Informatik
Yildirim, Mustafa Kemal
Institut für Medizinische Informatik