Christoph Schilling, Moritz Gansbiller, Broder Rühmann, Volker Sieber and Jochen Schmid
Forschungsartikel (Zeitschrift) | Peer reviewedMicrobial exopolysaccharides offer a sustainable alternative to petroleum-based rheological modifiers. Recent studies revealed that the heteroexopolysaccharide produced by Paenibacillus polymyxa is composed of three distinct biopolymers, referred to as paenan I, II and III. Using CRISPR-Cas9 mediated knock-out variants of glycosyltransferases, defined polysaccharide compositions were produced and rheologically characterized in detail. The high viscosity and gel-like character of the wildtype polymer is proposed to originate from the non-covalent interaction between a pyruvate residue of paenan I and the glucuronic acid found in the backbone of paenan III. Paenan II conveys thermostable properties to the exopolysaccharide mixture. In contrast to the wildtype polymer mixture, knock-out variants demonstrated significantly altered rheological behavior. Using the rheological characterization performed in this study, tailor-made paenan variants and mixtures can be generated to be utilized in a wide range of applications including thickening agents, coatings, or high-value biomedical materials.
Schmid, Jochen | Institut für Molekulare Mikrobiologie und Biotechnologie |