Interface-Driven Thermoelectric Switching Performance of VO+-Diffused Soda-Lime Glass

Alphonse C.M.E.; Garlapati M.M.; Tyler B.J.; Arlinghaus H.F.; Divinski S.V.; Wilde G.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Strongly confined NaVO+ segregation and its thermoresponsive functionality at the interface between simple sputter-deposited amorphous vanadium oxide thin films and soda-lime glass is substantiated in this work by in situ temperature-controlled time-of-flight secondary-ion mass spectrometry (ToF-SIMS). The obtained ToF-SIMS depth profiles provide unambiguous evidence for a reversible transformation that causes systematic switching of the NaVO+/Na+ and Na+/VO+ intensities upon cycling the temperature between 25 and 340 °C. Subsequently, NaVO complexes are found to be reversibly formed (at 300 °C) in vanadium oxide-diffused glass, leading to thermoresponsive electrical behavior of the thin-film glass system. This new segregation and diffusion-dependent multifunctionality of NaVO+ point toward applications as an advanced material for thermoelectrical/optical switches, in smart windows or in thermal sensors.

Details zur Publikation

FachzeitschriftPhysica Status Solidi - Rapid Research Letters
Jahrgang / Bandnr. / Volume15
Ausgabe / Heftnr. / Issue7
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1002/pssr.202100077
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85104731378
Stichwörterconductivity; smart transitions; sodium ions; vanadium pentoxide

Autor*innen der Universität Münster

Divinskyi, Sergii
Professur für Materialphysik (Prof. Wilde)
Garlapati, Mohan Muralikrishna
Professur für Materialphysik (Prof. Wilde)
Wilde, Gerhard
Professur für Materialphysik (Prof. Wilde)