Optimization reduces knee-joint forces during walking and squatting: Validating the inverse dynamics approach for full body movements on instrumented knee prostheses

Wagner, Heiko; Boström, Kim Joris; de Lussanet, Marc HE; de Graaf, Myriam Lauren; Puta, Christian; Mochizuki, Luis

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Because of the redundancy of our motor system, movements can be performed in many ways. While multiple motor control strategies can all lead to the desired behavior, they result in different joint and muscle forces. This creates opportunities to explore this redundancy, for example, for pain avoidance or reducing the risk of further injury. To assess the effect of different motor control optimization strategies, a direct measurement of muscle and joint forces is desirable, but problematic for medical and ethical reasons. Computational modeling might provide a solution by calculating approximations of these forces. In this study, we used a full-body computational musculoskeletal model to (a) predict forces measured in knee prostheses during walking and squatting and (b) study the effect of different motor control strategies (i.e., minimizing joint force vs. muscle activation) on the joint load and prediction error. We found that musculoskeletal models can accurately predict knee joint forces with a root mean squared error of <0.5 body weight (BW) in the superior direction and about 0.1 BW in the medial and anterior directions. Generally, minimization of joint forces produced the best predictions. Furthermore, minimizing muscle activation resulted in maximum knee forces of about 4 BW for walking and 2.5 BW for squatting. Minimizing joint forces resulted in maximum knee forces of 2.25 BW and 2.12 BW, that is, a reduction of 44% and 15%, respectively. Thus, changing the muscular coordination strategy can strongly affect knee joint forces. Patients with a knee prosthesis may adapt their neuromuscular activation to reduce joint forces during locomotion.

Details zur Publikation

FachzeitschriftMotor Control
Jahrgang / Bandnr. / Volume27
Ausgabe / Heftnr. / Issue2
Seitenbereich161-178
StatusVeröffentlicht
Veröffentlichungsjahr2022
DOI10.1123/mc.2021-0110
Stichwörterknee prosthesis; joint loading; computational model; inverse kinematics; muscle model; optimization criterion

Autor*innen der Universität Münster

Boström, Kim Joris
Professur für Bewegungswissenschaften (Prof. Wagner)
de Graaf, Myriam Lauren
Professur für Bewegungswissenschaften (Prof. Wagner)
de Lussanet De La Sablonière, Marc
Professur für Bewegungswissenschaften (Prof. Wagner)
Wagner, Heiko
Professur für Bewegungswissenschaften (Prof. Wagner)