A note on BKP for the Kontsevich matrix model with arbitrary potential

Borot, Gaëtan; Wulkenhaar, Raimar

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We exhibit the Kontsevich matrix model with arbitrary potential as a BKP tau-function with respect to polynomial deformations of the potential. The result can be equivalently formulated in terms of Cartan-Plücker relations of certain averages of Schur Q-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels is instrumental in the derivation of the result.

Details zur Publikation

FachzeitschriftSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Jahrgang / Bandnr. / Volume20
Artikelnummer050
StatusVeröffentlicht
Veröffentlichungsjahr2024 (11.06.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3842/SIGMA.2024.050
Link zum Volltexthttps::/doi.org/10.3842/SIGMA.2024.050
StichwörterBKP hierarchy; matrix models; classical integrability

Autor*innen der Universität Münster

Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)