Genetic, individual, and familial risk correlates of brain network controllability in major depressive disorder.

Hahn T; Winter NR; Ernsting J; Gruber M; Mauritz MJ; Fisch L; Leenings R; Sarink K; Blanke J; Holstein V; Emden D; Beisemann M; Opel N; Grotegerd D; Meinert S; Witt S; Heindel W; Nöthen MM; Rietschel M; Kircher T; Forstner AJ; Jansen A; Nenadic I; Andlauer TFM; Müller-Myhsok B; van den Heuvel MP; Walter M; Dannlowski U; Jamalabadi H; Repple J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.

Details zur Publikation

FachzeitschriftMolecular Psychiatry
Jahrgang / Bandnr. / Volume28
Ausgabe / Heftnr. / Issue3
Seitenbereich1057-1063
StatusVeröffentlicht
Veröffentlichungsjahr2023 (30.03.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1038/s41380-022-01936-6
StichwörterHumans; Depressive Disorder, Major; Diffusion Tensor Imaging; Genetic Predisposition to Disease; Magnetic Resonance Imaging; Brain; Connectome

Autor*innen der Universität Münster

Blanke, Julian
Institut für Translationale Psychiatrie
Dannlowski, Udo
Institut für Translationale Psychiatrie
Emden, Daniel
Institut für Translationale Psychiatrie
Ernsting, Jan
Institut für Translationale Psychiatrie
Fisch, Lukas
Institut für Translationale Psychiatrie
Grotegerd, Dominik
Institut für Translationale Psychiatrie
Gruber, Marius
Institut für Translationale Psychiatrie
Hahn, Tim
Institut für Translationale Psychiatrie
Heindel, Walter Leonhard
Klinik für Radiologie Bereich Lehre & Forschung
Holstein, Vincent Leonard
Institut für Translationale Psychiatrie
Leenings, Ramona
Institut für Translationale Psychiatrie
Mauritz, Marco
Institut für Translationale Psychiatrie
Meinert, Susanne Leonie
Institut für Translationale Neurowissenschaften
Repple, Jonathan
Institut für Translationale Psychiatrie
Sarink, Kelvin
Institut für Translationale Psychiatrie
Winter, Nils
Institut für Translationale Psychiatrie