Prediction of Acute Kidney Injury in the Intensive Care Unit: Preliminary Findings in a European Open Access Database

Fujarski M; Porschen C; Plagwitz L; Brenner A; Ghoreishi N; Thoral P; Grooth H; Elbers P; Weiss R; Meersch M; Zarbock A; Groote TC; Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Acute kidney injury (AKI) is a common complication in critically ill patients and is associated with long-term complications and an increased mortality. This work presents preliminary findings from the first freely available European intensive care database released by Amsterdam UMC. A machine learning (ML) model was developed to predict AKI in the intensive care unit 12 hours before the actual event. Main features of the model included medications and hemodynamic parameters. Our models perform with an accuracy of 81.8{\%} on moderate to severe AKI and 79.8{\%} on all AKI patients. Those results can compete with models reported in the literature and introduce an ML model for AKI based on European patient data.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume294
Seitenbereich139-140
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI220419
Link zum Volltexthttp://www.ncbi.nlm.nih.gov/pubmed/35612039
StichwörterAccess to Information; Acute Kidney Injury/diagnosis; Critical Illness; Databases, Factual; Humans; Intensive Care Units

Autor*innen der Universität Münster

Brenner, Alexander
Institut für Medizinische Informatik
Fujarski, Michael
Institut für Medizinische Informatik
Plagwitz, Lucas
Institut für Medizinische Informatik
Varghese, Julian
Institut für Medizinische Informatik