Supporting AI-Explainability by Analyzing Feature Subsets in a Machine Learning Model

Plagwitz L; Brenner A; Fujarski M; Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Machine learning algorithms become increasingly prevalent in the field of medicine, as they offer the ability to recognize patterns in complex medical data. Especially in this sensitive area, the active usage of a mostly black box is a controversial topic. We aim to highlight how an aggregated and systematic feature analysis of such models can be beneficial in the medical context. For this reason, we introduce a grouped version of the permutation importance analysis for evaluating the influence of entire feature subsets in a machine learning model. In this way, expert-defined subgroups can be evaluated in the decision-making process. Based on these results, new hypotheses can be formulated and examined.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume294
Seitenbereich109-113
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI220406
Link zum Volltexthttp://www.ncbi.nlm.nih.gov/pubmed/35612026
StichwörterAlgorithms; Artificial Intelligence; Machine Learning

Autor*innen der Universität Münster

Brenner, Alexander
Institut für Medizinische Informatik
Fujarski, Michael
Institut für Medizinische Informatik
Plagwitz, Lucas
Institut für Medizinische Informatik
Varghese, Julian
Institut für Medizinische Informatik