InterCellar enables interactive analysis and exploration of cell-cell communication in single-cell transcriptomic data

Interlandi M; Kerl K; Dugas M

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Deciphering cell-cell communication is a key step in understanding the physiology and pathology of multicellular systems. Recent advances in single-cell transcriptomics have contributed to unraveling the cellular composition of tissues and enabled the development of computational algorithms to predict cellular communication mediated by ligand-receptor interactions. Despite the existence of various tools capable of inferring cell-cell interactions from single-cell RNA sequencing data, the analysis and interpretation of the biological signals often require deep computational expertize. Here we present InterCellar, an interactive platform empowering lab-scientists to analyze and explore predicted cell-cell communication without requiring programming skills. InterCellar guides the biological interpretation through customized analysis steps, multiple visualization options, and the possibility to link biological pathways to ligand-receptor interactions. Alongside convenient data exploration features, InterCellar implements data-driven analyses including the possibility to compare cell-cell communication from multiple conditions. By analyzing COVID-19 and melanoma cell-cell interactions, we show that InterCellar resolves data-driven patterns of communication and highlights molecular signals through the integration of biological functions and pathways. We believe our user-friendly, interactive platform will help streamline the analysis of cell-cell communication and facilitate hypothesis generation in diverse biological systems.

Details zur Publikation

FachzeitschriftCommunications biology (Commun Biol)
Jahrgang / Bandnr. / Volume5
Ausgabe / Heftnr. / Issue1
Seitenbereich21-21
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1038/s42003-021-02986-2
Link zum Volltexthttps://www.nature.com/articles/s42003-021-02986-2
Stichwörterpredict cellular communication; InterCellar; data-driven patterns of communication

Autor*innen der Universität Münster

Dugas, Martin
Institut für Medizinische Informatik
Interlandi, Marta
Institut für Medizinische Informatik