MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes

Schäpermeier L.; Grimme C.; Kerschke P.

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Recent advances in the visualization of continuous multimodal multi-objective optimization (MMMOO) landscapes brought a new perspective to their search dynamics. Locally eficient (LE) sets, often considered as traps for local search, are rarely isolated in the decision space. Rather, intersections by superposing attraction basins lead to further solution sets that at least partially contain better solutions. The Multi-Objective Gradient Sliding Algorithm (MOGSA) is an algorithmic concept developed to exploit these superpositions. While it has promising performance on many MMMOO problems with linear LE sets, closer analysis of MOGSA revealed that it does not sufficiently generalize to a wider set of test problems. Based on a detailed analysis of shortcomings of MOGSA, we propose a new algorithm, the Multi-Objective Landscape Explorer (MOLE). It is able to efficiently model and exploit LE sets in MMMOO problems. An implementation of MOLE is presented for the bi-objective case, and the practicality of the approach is shown in a benchmarking experiment on the Bi-Objective BBOB testbed.

Details zur Publikation

Herausgeber*innenFieldsend, J. E.
BuchtitelProceedings of the Genetic and Evolutionary Computation Conference
Seitenbereich592-600
VerlagACM Press
ErscheinungsortNew York, NY, USA
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Konferenz2022 Genetic and Evolutionary Computation Conference, GECCO 2022, Boston, Massachusetts, Vereinigte Staaten
ISBN9781450392372
DOI10.1145/3512290.3528793
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85135240841
Stichwörtercontinuous optimization; local search; heuristics; multimodality; multi-objective optimization

Autor*innen der Universität Münster

Grimme, Christian
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Schäpermeier, Lennart Merlin
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)