A short review on local shtukas and divisible local Anderson modules

Hartl, Urs; Singh, Rajineesh Kumar

Übersichtsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

We review the analog of crystalline Dieudonné theory for p-divisible groups in the arithmetic of function fields from [21]. In our theory, p-divisible groups are replaced by divisible local Anderson modules, and Dieudonné modules are replaced by local shtukas. We also explain their relation to global objects like Drinfeld modules and A-motives. We review the cohomology realizations of local shtukas and their comparison isomorphisms, and in the last section we explain how this yields the function field analog of Fontaine’s theory of p-adic Galois representations.

Details zur Publikation

Herausgeber*innenD. Banerjee, K. Kedlaya, E. de Shalit, C. Chaudhuri
BuchtitelPerfectoid Spaces
Seitenbereich51-68
VerlagSpringer International Publishing
ErscheinungsortSingapore
Titel der ReiheInfosys Science Foundation Series in Mathematical Sciences (ISSN: 2364-4036)
StatusVeröffentlicht
Veröffentlichungsjahr2022
DOI10.1007/978-981-16-7121-0_4
StichwörterLocal Shtukas, Anderson modules, formal Lie groups

Autor*innen der Universität Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Singh, Rajneesh Kumar
Mathematisches Institut