Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks

Segnon, Mawuli; Gupta, Rangan; Wilfling, Bernd

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We investigate the role of geopolitical risks in forecasting stock-market volatility for monthly horizons-ahead within a robust autoregressive Markov-switching GARCH mixed-data-sampling (AR-MSGARCH-MIDAS) framework. Our approach accounts for structural breaks through regime-switching and allows us to disentangle short- and long-run volatility components. We conduct an empirical out-of-sample forecasting analysis using (i) daily Dow-Jones-Industrial-Average returns, and (ii) monthly sampled geopolitical risks and macroeconomic variables over a time span of 122 years. We find that the impact of geopolitical risks as explanatory variables for stock-market volatility forecasts for monthly horizons hinges crucially on the specific prediction model chosen by the forecaster. After capturing the non-stationarities in the data via an MSGARCH framework, we do not find significant forecast accuracy improvements through the inclusion of geopolitical risk indices.

Details zur Publikation

FachzeitschriftInternational Journal of Forecasting
Jahrgang / Bandnr. / Volume40
Ausgabe / Heftnr. / Issue1
Seitenbereich29-43
StatusVeröffentlicht
Veröffentlichungsjahr2024 (02.01.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.ijforecast.2022.11.007
Link zum Volltexthttps://www.sciencedirect.com/science/article/abs/pii/S0169207022001601
StichwörterGeopolitical risks; Volatility forecasts; Markov-Switching GARCH-MIDAS

Autor*innen der Universität Münster

Segnon, Mawuli Kouami
Lehrstuhl für Volkswirtschaftslehre, insbesondere empirische Wirtschaftsforschung
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)