Automatic Feature Engineering Using Self-Organizing Maps

Silva Rodrigues E, Martins DML, Lima Neto FB

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Feature Engineering (FE) consists of generating new, better features to improve the results obtained by Machine Learning models. Very often, FE is performed in a series of trial-and-error steps conducted manually by data scientists. Moreover, FE requires data-specific and domain knowledge, both rarely easy to acquire. To alleviate these problems, we propose an automatic FE approach based on Self-Organizing Maps (SOM) in which new features are generated via pattern recognition. The use of the SOM algorithm in variable generation tasks can identify data elements that help Machine Learning models to obtain better results and points out to a broad direction for future researches.

Details zur Publikation

Herausgeber*innenUnknown, Unknown;
Buchtitel{IEEE} Latin American Conference on Computational Intelligence, {LA-CCI} 2021, Temuco, Chile, November 2-4, 2021
Seitenbereich1-6
VerlagWiley-IEEE Press
ErscheinungsortTemuco, Chile
StatusVeröffentlicht
Veröffentlichungsjahr2021
Konferenz2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Temuco, Chile
ISBN978-1-7281-8864-5
DOI10.1109/LA-CCI48322.2021.9769788
Link zum Volltexthttps://doi.org/10.1109/LA-CCI48322.2021.9769788
Stichwörterfeature engineering; automatic feature engineering; self-organizing maps; machine learning

Autor*innen der Universität Münster

Lima Martins, Denis Mayr
Lehrstuhl für Maschinelles Lernen und Data Engineering (Prof. Gieseke) (MLDE)