Evolving Interpretable Classification Models via Readability-Enhanced Genetic Programming

Souza Abreu JVT, Martins DML, Lima Neto FB

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

As the impact of Machine Learning (ML) on busi-ness and society grows, there is a need for making opaque ML models transparent and interpretable, especially in the light of fairness, bias, and discrimination. Nevertheless, interpreting complex opaque models is not trivial. Current interpretability approaches rely on local explanations or produce long explanations that tend to overload the user's cognitive abilities. In this paper, we address this problem by extracting interpretable, transparent models from opaque ones via a new readability-enhanced multi-objective Genetic Programming approach called REMO-GP. To achieve that, we adapt text readability metrics into model complexity proxies that support evaluating ML interpretability. We demonstrate that our approach can generate global interpretable models that mimic the decisions of complex opaque models over several datasets, while keeping model complexity low.

Details zur Publikation

Herausgeber*innenIshibuchi, Hisao; Kwoh, Chee-Keong; Tan, Ah-Hwee; Srinivasan, Dipti; Miao, Chunyan; Trivedi, Anupam; Crockett, Keeley
BuchtitelProceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI 2022), 4 – 7 December 2022, Singapore
Seitenbereich1691-1697
VerlagWiley-IEEE Press
ErscheinungsortSingapur
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Konferenz2022 Symposium Series on Computational Intelligence (SSCI), Singapur, Singapur
ISBN978-1-6654-8768-9
DOI10.1109/SSCI51031.2022.10022164
StichwörterArtificial Intelligence; Opaque Models; Genetic Programming; Interpretability; Binary Classification

Autor*innen der Universität Münster

Lima Martins, Denis Mayr
Lehrstuhl für Maschinelles Lernen und Data Engineering (Prof. Gieseke) (MLDE)