Moderating the Good, the Bad, and the Hateful: Moderators' Attitudes towards ML-based Comment Moderation Support Systems

Koelmann, Holger; Müller, Kilian; Niemann, Marco; Riehle, Dennis Maximilian

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Comment sections have established themselves as essential elements of the public discourse. However, they put considerable pressure on the hosting organizations to keep them clean of hateful and abusive comments. This is necessary to prevent violating legal regulations and to avoid appalling their readers. With commenting being a typically free feature and anonymity encouraging increasingly daunting comments, many newspapers struggle to operate economically viable comment sections. Hence, throughout the last decade, researchers set forth to develop machine learning (ML) models to automate this work. With increasingly sophisticated algorithms, research is starting on comment moderation support systems that integrate ML models to relieve moderators from parts of their workload. Our research sets forth to assess the attitudes of moderators towards such systems to provide guidance for future developments. This paper presents the findings from three conducted expert interviews, which also included tool usage observations.

Details zur Publikation

Herausgeber*innenSpezzano, Francesca; Amaral, Adriana; Ceolin, Davide; Fazio, Lisa; Serra, Edoardo
BuchtitelDisinformation in Open Online Media - 4th Multidisciplinary International Symposium, MISDOOM 2022, Boise, ID, USA, October 11–12, 2022, Proceedings
Seitenbereich100-113
VerlagSpringer Nature
ErscheinungsortCham
Titel der ReiheLecture Notes in Computer Science (ISSN: 0302-9743)
Nr. in Reihe13545
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Konferenz4th Multidisciplinary International Symposium on Disinformation in Open Online Media, Boise, ID, Vereinigte Staaten
ISBN978-3-031-18252-5
DOI10.1007/978-3-031-18253-2_7
StichwörterCommunity Management; Machine Learning; Content Moderation; Comment Moderation Support System; Digital Work

Autor*innen der Universität Münster

Koelmann, Holger
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Müller, Kilian
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Niemann, Marco
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Riehle, Dennis
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)