Financial-market volatility prediction with multiplicative Markov-switching MIDAS components

Schulte-Tillmann, Björn; Segnon, Mawuli; Wilfling, Bernd

Arbeitspapier / Working Paper | Peer reviewed

Zusammenfassung

We propose four multiplicative-component volatility MIDAS models to disentangle short- and long-term volatility sources. Three of our models specify short-term volatility as Markov-switching processes. We establish statistical properties, covariance-stationarity conditions, and an estimation framework using regime-switching filter techniques. A simulation study shows the robustness of the estimates against several mis-specifications. An out-of-sample forecasting analysis with daily S&P500 returns and quarterly-sampled (macro)economic variables yields two major results. (i) Specific long-term variables in the MIDAS models significantly improve forecast accuracy (over the non-MIDAS benchmarks). (ii) We robustly find superior performance of one Markov-switching MIDAS specification (among a set of competitor models) when using the 'Term structure' as the long-term variable.

Details zur Publikation

Herausgeber*innenCenter for Quantitative Economics (CQE)
ErscheinungsortMünster
Titel der ReiheCQE Working Papers
Nr. in Reihe99/2022
StatusVeröffentlicht
Veröffentlichungsjahr2022 (13.06.2022)
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttps://www.wiwi.uni-muenster.de/cqe/de/publikationen/cqe-working-papers
StichwörterMIDAS volatility modeling; Hierarchical hidden Markov models; Markov-switching; Forecasting; Model confidence sets

Autor*innen der Universität Münster

Schulte genannt Tillmann, Björn
Lehrstuhl für Volkswirtschaftslehre, insbesondere empirische Wirtschaftsforschung
Segnon, Mawuli Kouami
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)