Strieth-Kalthoff, Felix; Sandfort, Frederik; Kühnemund, Marius; Schäfer, Felix R.; Kuchen, Herbert; Glorius, Frank
Forschungsartikel (Zeitschrift) | Peer reviewedAssessing the outcomes of chemical reactions in a quantitative fashion has been a cornerstone across all synthetic disciplines. Classically approached through empirical optimization, data-driven modelling bears an enormous potential to streamline this process. However, such predictive models require significant quantities of high-quality data, the availability of which is limited: Main reasons for this include experimental errors and, importantly, human biases regarding experiment selection and result reporting. In a series of case studies, we investigate the impact of these biases for drawing general conclusions from chemical reaction data, revealing the utmost importance of “negative” examples. Eventually, case studies into data expansion approaches showcase directions to circumvent these limitations—and demonstrate perspectives towards a long-term data quality enhancement in chemistry.
Glorius, Frank | Professur für Organische Chemie (Prof. Glorius) |
Kuchen, Herbert | Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI) |
Kühnemund, Marius | Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI) |
Sandfort, Frederik | Professur für Organische Chemie (Prof. Glorius) |
Schäfer, Felix Richard | Professur für Organische Chemie (Prof. Glorius) |
Strieth-Kalthoff, Felix | Professur für Organische Chemie (Prof. Glorius) |