On the dynamics of point vortices for the 2D Euler equation with Lp vorticity

Ceci S, Seis C

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely Lp" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝐿𝑝 integrable for some p>2" role="presentation" style="display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; position: relative;">𝑝>2, we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz–Kirchhoff point vortex system.

Details zur Publikation

FachzeitschriftPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Jahrgang / Bandnr. / Volume380
Ausgabe / Heftnr. / Issue2226
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1098/rsta.2021.0046
Link zum Volltexthttps://arxiv.org/abs/2107.12820
Stichwörtervortex dynamics, Euler equations, unbounded vorticity

Autor*innen der Universität Münster

Ceci, Stefano
Institut für Analysis und Numerik
Seis, Christian
Professur für Angewandte Mathematik (Prof. Seis)