The $β$-Delaunay tessellation IV: Mixing properties and central limit theorems

Gusakova, Anna; Kabluchko, Zakhar; Thäle, Christoph

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Various mixing properties of β-, β' - and Gaussian Delaunay tessellations in Rd-1 are studied. It is shown that these tessellation models are absolutely regular, or β-mixing. In the β- and the Gaussian case exponential bounds for the absolute regularity coefficients are found. In the β 0 -case these coefficients show a polynomial decay only. In the background are new and strong concentration bounds on the radius of stabilization of the underlying construction. Using a general device for absolutely regular stationary random tessellations, central limit theorems for a number of geometric parameters of β- and Gaussian Delaunay tessellations are established. This includes the number of k-dimensional faces and the k-volume of the k-skeleton for k ∈ {0, 1, . . . , d − 1} MSC: 52A22, 52B11, 53C65, 60D05, 60F05.

Details zur Publikation

FachzeitschriftStochastics and Dynamics
Jahrgang / Bandnr. / Volume23
Ausgabe / Heftnr. / Issue3
Artikelnummer2350021
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1142/S0219493723500211
Link zum Volltexthttps://arxiv.org/abs/2108.09472
StichwörterAbsolute regularity; beta-Delaunay tessellation; beta’-Delaunay tessellation; central limit theorem; Gaussian-Delaunay tessellation; mixing properties; radius of stabilization; stochastic geometry; tail triviality

Autor*innen der Universität Münster

Gusakova, Anna
Juniorprofessur für Angewandte Mathematik (Prof. Gusakova)
Kabluchko, Zakhar
Professur für Wahrscheinlichkeitstheorie (Prof. Kabluchko)