The $β$-Delaunay tessellation III: Kendall's problem and limit theorems in high dimensions

Gusakova, Anna; Kabluchko, Zakhar; Thäle, Christoph

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The β-Delaunay tessellation in Rd-1 is a generalization of the classical Poisson-Delaunay tessellation. As a first result of this paper we show that the shape of a weighted typical cell of a β-Delaunay tessellation, conditioned on having large volume, is close to the shape of a regular simplex in Rd-1. This generalizes earlier results of Hug and Schneider about the typical (non-weighted) Poisson-Delaunay simplex. Second, the asymptotic behaviour of the volume of weighted typical cells in high-dimensional β-Delaunay tessellation is analysed, as d → ∞. In particular, various high dimensional limit theorems, such as quantitative central limit theorems as well as moderate and large deviation principles, are derived. 2010 Mathematics Subject Classification. 52A22, 52A40, 60D05, 60F05, 60F10.

Details zur Publikation

FachzeitschriftLatin American Journal of Probability and Mathematical Statistics (ALEA)
Jahrgang / Bandnr. / Volume19
Seitenbereich23-50
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.30757/ALEA.v19-02
Link zum Volltexthttps://alea.impa.br/articles/v19/19-02.pdf
StichwörterBeta-Delaunay tessellation; central limit theorem; cumulant method; large deviations; moderate deviations; mod-phi convergence; Kendall’s problem; stochastic geometry; typical cell; weighted typical cell.

Autor*innen der Universität Münster

Gusakova, Anna
Juniorprofessur für Angewandte Mathematik (Prof. Gusakova)
Kabluchko, Zakhar
Professur für Wahrscheinlichkeitstheorie (Prof. Kabluchko)