The $β$-Delaunay tessellation: Description of the model and geometry of typical cells

Gusakova, Anna; Kabluchko, Zakhar; Thäle, Christoph

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this paper we introduce two new classes of stationary random simplicial tessellations, the so-called β- and β'-Delaunay tessellations. Their construction is based on a space-time paraboloid hull process and generalizes that of the classical Poisson–Delaunay tessellation. We explicitly identify the distribution of volume-power-weighted typical cells, establishing thereby a remarkable connection to the classes of β- and β'-polytopes. These representations are used to determine the principal characteristics of such cells, including volume moments, expected angle sums, and cell intensities. 2020 Mathematics Subject Classification: Primary 60D05; 60G55; Secondary 52A22; 52B11; 53C65

Details zur Publikation

FachzeitschriftAdvances in Applied Probability (Adv. in Appl. Probab.)
Jahrgang / Bandnr. / Volume54
Ausgabe / Heftnr. / Issue4
Seitenbereich1254-1290
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1017/apr.2022.6
Link zum Volltexthttps://arxiv.org/abs/2005.13875
StichwörterAngle sums; $\beta$-Delaunay tessellation; $\beta$-polytope; $\beta'$-polytope; Laguerre tessellation; paraboloid convexity; paraboloid hull process; Poisson point process; Poisson-Delaunay tessellation; Poisson-Voronoi tessellation; random polytope; stochastic geometry; weighted typical cell; zero cell

Autor*innen der Universität Münster

Gusakova, Anna
Juniorprofessur für Angewandte Mathematik (Prof. Gusakova)
Kabluchko, Zakhar
Professur für Wahrscheinlichkeitstheorie (Prof. Kabluchko)