One-matrix differential reformulation of two-matrix models

Brunekreef, J; Lionni, L; Thürigen, J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Differential reformulations of field theories are often used for explicit computations. We derive a one-matrix differential formulation of two-matrix models, with the help of which it is possible to diagonalize the one- and two-matrix models using a formula by Itzykson and Zuber that allows diagonalizing differential operators with respect to matrix elements of Hermitian matrices. We detail the equivalence between the expressions obtained by diagonalizing the partition function in differential or integral formulation, which is not manifest at first glance. For one-matrix models, this requires transforming certain derivatives to variables. In the case of two-matrix models, the same computation leads to a new determinant formulation of the partition function, and we discuss potential applications to new orthogonal polynomials methods.

Details zur Publikation

FachzeitschriftReviews in Mathematical Physics (Rev. Math. Phys.)
Jahrgang / Bandnr. / Volume34
Ausgabe / Heftnr. / Issue08
Seitenbereich2250026null
StatusVeröffentlicht
Veröffentlichungsjahr2022 (04.07.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1142/S0129055X2250026X
Link zum Volltexthttps://arxiv.org/abs/2108.00540
StichwörterRandom matrices; differential formulation; orthogonal polynomials; matrix models

Autor*innen der Universität Münster

Thürigen, Johannes
Professur für Reine Mathematik (Prof. Wulkenhaar)