Simon, T.M.
Forschungsartikel (Zeitschrift) | Peer reviewedBased on a geometrically linearized theory, we describe the partition into twins observed in microstructures of shape memory alloys undergoing cubic-to-tetragonal transformations in an ansatz-free way using H-measures, a tool of microlocal analysis to describe the direction of oscillations and concentration effects of weakly convergent sequences. As an application, we give a 𝐵1,∞2/3-estimate for the characteristic functions of twins generated by finite energy sequences in the spirit of compactness for Γ-convergence. Heuristically, this suggests that the larger-scale interfaces, such as habit planes, can cluster on a set of Hausdorff-dimension 3−23. We provide evidence indicating that this fractional dimension is optimal. Furthermore, we get an essentially local lower bound for the blow-up behavior of the limiting energy density close to a habit plane.
Simon, Theresa | Juniorprofessur für Angewandte Mathematik (Prof. Simon) |
Rigidity of branching microstructures in shape memory alloys Simon, Theresa (19.05.2021) SIAM Conference on Mathematical Aspects of Materials Science, Basque Center for Applied Mathematics, Bilbao, Spain Art des Vortrags: wissenschaftlicher Vortrag | |
Rigidity of branching microstructures in shape memory alloys Simon, Theresa (06.10.2017) Materials Working Group Seminar, New York University, New York, USA Art des Vortrags: wissenschaftlicher Vortrag | |
Rigidity of branching microstructures in shape memory alloys Simon, Theresa (21.07.2017) Graduate Seminar PDE in the Sciences, Rheinische Friedrich-Wilhelms-Universtität Bonn, Bonn, Deutschland Art des Vortrags: wissenschaftlicher Vortrag | |
Rigidity of branching microstructures in shape memory alloys Simon, Theresa (14.07.2017) Oberseminar Mathematik in den Naturwissenschaften, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland Art des Vortrags: wissenschaftlicher Vortrag | |
Rigidity of shape memory alloys Simon, Theresa (17.03.2017) Arbeitsgemeinschaft Angewandte Analysis, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Deutschland Art des Vortrags: wissenschaftlicher Vortrag |