Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms

Himpe C

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

In this work, the empirical-Gramian-based model reduction methods: Empirical poor man's truncated balanced realization, empirical approximate balancing, empirical dominant subspaces, empirical balanced truncation, and empirical balanced gains are compared in a non-parametric and in two parametric variants, via ten error measures: Approximate Lebesgue L0, L1, L2, L∞, Hardy H2, H∞, Hankel, Hilbert-Schmidt-Hankel, modified induced primal, and modified induced dual norms, for variants of the thermal block model reduction benchmark. This comparison is conducted via a new meta-measure for model reducibility called MORscore.

Details zur Publikation

Herausgeber*innenBenner P, Breiten T, Faßbender H, Hinze M, Stykel T, Zimmermann R
BuchtitelModel Reduction of Complex Dynamical Systems
Seitenbereich141-164
Titel der ReiheInternational Series of Numerical Mathematics
Nr. in Reihe171
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/978-3-030-72983-7_7

Autor*innen der Universität Münster

Himpe, Christian
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)