Category of C-Motives over Finite Fields

E. Arasteh Rad, U. Hartl

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this article we introduce and study a motivic category in the arithmetic of function fields, namely the category of motives over an algebraic closure L of a finite field with coefficients in a global function field over this finite field. It is semi-simple, non-neutral Tannakian and possesses all the expected fiber functors. This category generalizes the previous construction due to Anderson and is more relevant for applications to the theory of G-Shtukas, such as formulating the analog of the Langlands-Rapoport conjecture over function fields. We further develop the analogy with the category of motives over L with coefficients in Q for which the existence of the expected fiber functors depends on famous unproven conjectures

Details zur Publikation

FachzeitschriftJournal of Number Theory
Jahrgang / Bandnr. / Volume232
Seitenbereich283-316
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttp://arXiv:math.NT/1810.11941

Autor*innen der Universität Münster

Arasteh Rad, Esmail Mohammad
Professur für Arithmetische Geometrie (Prof. Hartl)
Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)