The generic fiber of moduli spaces of bounded local G-shtukas

Hartl, Urs; Viehmann, Eva

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Moduli spaces of bounded local G-shtukas are a group-theoretic generalization of the function field analog of Rapoport and Zink's moduli spaces of p-divisible groups. In this article we generalize some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fiber of the moduli space which is equipped with a Hecke action and an action of a suitable automorphism group. Finally we consider the ℓ-adic cohomology of these towers.

Details zur Publikation

FachzeitschriftJournal of the Institute of Mathematics of Jussieu (J. Inst. Math. Jussieu)
Jahrgang / Bandnr. / Volume22
Ausgabe / Heftnr. / Issue2
Seitenbereich799-878
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1017/S1474748021000293
Link zum Volltexthttp://arXiv:math.AG/1712.07936
Stichwörterlocal G-shtukas; cohomology; period morphism; period domains; Rapoport-Zink spaces

Autor*innen der Universität Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Viehmann, Eva
Professur für Theoretische Mathematik (Prof. Viehmann)