Adaptive machine learning based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery

Keil T, Kleikamp H, Lorentzen R, Oguntola M, Ohlberger M

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this contribution, we develop an efficient surrogate modeling frame- work for simulation-based optimization of enhanced oil recovery, where we particularly focus on polymer flooding. The computational approach is based on an adaptive training procedure of a neural network that directly approximates an input-output map of the underlying PDE- constrained optimization problem. The training process thereby focuses on the construction of an accurate surrogate model solely related to the optimization path of an outer iterative optimization loop. True evalua- tions of the objective function are used to finally obtain certified results. Numerical experiments are given to evaluate the accuracy and efficiency of the approach for a heterogeneous five-spot benchmark problem.

Details zur Publikation

FachzeitschriftAdvances in Computational Mathematics (Adv. Comp. Math)
Jahrgang / Bandnr. / Volume2022
Ausgabe / Heftnr. / Issue48
Artikelnummer73
StatusVeröffentlicht
Veröffentlichungsjahr2022 (09.11.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s10444-022-09981-z
Link zum Volltexthttps://link.springer.com/article/10.1007/s10444-022-09981-z
Stichwörterenhanced oil recovery; PDE-constrained optimization; surrogate model; neural networks

Autor*innen der Universität Münster

Keil, Tim
Institut für Analysis und Numerik
Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)