A Relaxed Localized Trust-Region Reduced Basis Approach for Optimization of Multiscale Problems

Keil Tim, Ohlberger Mario

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this contribution, we are concerned with parameter optimization problems that are constrained by multiscale PDE state equations. As an efficient numerical solution approach for such problems, we introduce and analyze a new relaxed and localized trust-region reduced basis method. Localization is obtained based on a Petrov-Galerkin localized orthogonal decomposition method and its recently introduced two-scale reduced basis approximation. We derive efficient localizable a posteriori error estimates for the optimality system, as well as for the two-scale reduced objective functional. While the relaxation of the outer trust-region optimization loop still allows for a rigorous convergence result, the resulting method converges much faster due to larger step sizes in the initial phase of the iterative algorithms. The resulting algorithm is parallelized in order to take advantage of the localization. Numerical experiments are given for a multiscale thermal block benchmark problem. The experiments demonstrate the efficiency of the approach, particularly for large scale problems, where methods based on traditional finite element approximation schemes are prohibitive or fail entirely.

Details zur Publikation

FachzeitschriftESAIM: Mathematical Modelling and Numerical Analysis
Jahrgang / Bandnr. / Volume58
Seitenbereich79-105
StatusVeröffentlicht
Veröffentlichungsjahr2024 (16.01.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1051/m2an/2023089
Link zum Volltexthttps://doi.org/10.1051/m2an/2023089
StichwörterPDE constrained optimization; relaxed trust-region method; localized orthogonal decomposition; twoscale reduced basis approximation; multiscale optimization problems

Autor*innen der Universität Münster

Keil, Tim
Institut für Analysis und Numerik
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)