A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction

Monschang Verena, Wilfling Bernd

Arbeitspapier / Working Paper | Peer reviewed

Zusammenfassung

We investigate mean-squared-forecast-error (MSE) accuracy improvements for linear-convex combination forecasts, whose components are pretreated by a procedure called 'Vector Autoregressive Forecast Error Modeling' (VAFEM). Assuming that the forecast-error series of the individual forecasts are governed by a stable VAR process under classic conditions, we obtain the following results: (i) VAFEM treatment bias-corrects all individual and linear-convex combination forecasts. (ii) Any VAFEM-treated combination has smaller theoretical MSE than its untreated analogue, if the VAR parameters are known. (iii) In empirical applications, VAFEM gains depend on (1) in-sample sizes, (2) out-of-sample forecast horizons, (3) the biasedness of the untreated forecast combination. We demonstrate the VAFEM capacity for realized-volatility forecasting, using S&P 500 data.

Details zur Publikation

ErscheinungsortUniversity of Muenster
Titel der ReiheCQE-Working-Papers
Nr. in Reihe97/2022
StatusVeröffentlicht
Veröffentlichungsjahr2022 (22.03.2022)
Sprache, in der die Publikation verfasst istEnglisch
StichwörterCombination forecasts; mean-squared-error loss; VAR forecast-error modeling; multivariate least squares estimation

Autor*innen der Universität Münster

Monschang, Verena
Lehrstuhl für Volkswirtschaftslehre, insbesondere empirische Wirtschaftsforschung
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)