An Uncertainty-Aware, Shareable and Transparent Neural Network Architecture for Brain-Age Modeling

Hahn T, Ernsting J, Winter NR, Holstein V, Leenings R, Beisemann M, Fisch L, Sarink K, Emden D, Opel N, Redlich R, Repple J, Grotegerd D, Meinert S, Hirsch JG, Niendorf T, Endemann B, Bamberg F, Kröncke T, Bülow R, Völzke H, von Stackelberg O, Sowade RF, Umutlu L, Schmidt B, Caspers S, Kugel H, Kircher T, Risse B, Gaser C, Cole JH, Dannlowski U, Berger K

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

A network-based quantification of brain aging uncovers and fixes a fundamental problem of all previous approaches. The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.

Details zur Publikation

FachzeitschriftScience advances (Sci Adv)
Jahrgang / Bandnr. / Volume8
Ausgabe / Heftnr. / Issue1
Seitenbereicheabg9471-eabg9471
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1126/sciadv.abg9471
Link zum Volltexthttps://www.science.org/doi/abs/10.1126/sciadv.abg9471
StichwörterBrain Age; Uncertainty; Neural Network; Machine Learning

Autor*innen der Universität Münster

Berger, Klaus
Institut für Epidemiologie und Sozialmedizin
Dannlowski, Udo
Institut für Translationale Psychiatrie
Emden, Daniel
Institut für Translationale Psychiatrie
Ernsting, Jan
Institut für Translationale Psychiatrie
Fisch, Lukas
Institut für Translationale Psychiatrie
Grotegerd, Dominik
Institut für Translationale Psychiatrie
Hahn, Tim
Institut für Translationale Psychiatrie
Holstein, Vincent Leonard
Institut für Translationale Psychiatrie
Kugel, Harald
Klinik für Radiologie Bereich Lehre & Forschung
Leenings, Ramona
Institut für Translationale Psychiatrie
Meinert, Susanne Leonie
Institut für Translationale Neurowissenschaften
Redlich, Ronny
Institut für Translationale Psychiatrie
Repple, Jonathan
Institut für Translationale Psychiatrie
Risse, Benjamin
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Sarink, Kelvin
Institut für Translationale Psychiatrie
Winter, Nils
Institut für Translationale Psychiatrie