Towards a Parameterless Out-of-the-box Population Size Control for Evolutionary and Swarm-based Algorithms for Single Objective Bound Constrained Real-Parameter Numerical Optimization

Gomes Pereira de Lacerda M., de Andrade Amorim Neto H., Ludermir T.B., Kuchen H., Buarque de Lima Neto F.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We present an innovative step towards a parameterless out-of-the-box population size control for evolutionary and swarm-based algorithms for single objective bound constrained real-parameter numerical optimization. To the best of our knowledge, our approach is the first parameterless out- of-the-box parameter control for such a kind of technique. It is easy to implement and to use, since it does not require the adjustment of any parameter. The general idea is to increment the velocity of the population change if the best fitness stagnates, and decrement it otherwise. Then, in order to effectively change the population size, a mechanism of removal/addition of individuals inspired by the selection methods of evolutionary algorithms is executed. Our experimental results provide evidence that our controller is not only compatible with any evolutionary or swarm-based algorithm for single objective bound constrained real-parameter numerical optimization, but that it also performs well in many scenarios

Details zur Publikation

FachzeitschriftApplied Soft Computing Journal
Jahrgang / Bandnr. / Volume123
Artikelnummer108920
StatusVeröffentlicht
Veröffentlichungsjahr2022 (30.04.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.asoc.2022.108920
StichwörterPopulation size control, Parameter control, Swarm intelligence, Evolutionary computation

Autor*innen der Universität Münster

Buarque, Fernando
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
Kuchen, Herbert
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)
European Research Center for Information Systems (ERCIS)