A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs

Haasdonk B, Kleikamp H, Ohlberger M, Schindler F, Wenzel T

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We present a new surrogate modeling technique for efficient approximation of input-output maps governed by parametrized PDEs. The model is hierarchical as it is built on a full order model (FOM), reduced order model (ROM) and machine-learning (ML) model chain. The model is adaptive in the sense that the ROM and ML model are adapted on-the-fly during a sequence of parametric requests to the model. To allow for a certification of the model hierarchy, as well as to control the adaptation process, we employ rigorous a posteriori error estimates for the ROM and ML models. In particular, we provide an example of an ML-based model that allows for rigorous analytical quality statements. We demonstrate the efficiency of the modeling chain on a Monte Carlo and a parameter-optimization example. Here, the ROM is instantiated by Reduced Basis Methods and the ML model is given by a neural network or a VKOGA kernel model.

Details zur Publikation

FachzeitschriftSIAM Journal on Scientific Computing (SIAM J. Sci. Comput.)
Jahrgang / Bandnr. / Volume45
Ausgabe / Heftnr. / Issue3
SeitenbereichA1039-1065
StatusVeröffentlicht
Veröffentlichungsjahr2023 (11.05.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1137/22M1493318
Link zum Volltexthttps://epubs.siam.org/doi/10.1137/22M1493318
Stichwörtermodel order reduction; machine learning; reduced basis methods; error estimation; neural networks; kernel methods

Autor*innen der Universität Münster

Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC) (CMTC)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)

Projekte, aus denen die Publikation entstanden ist

Laufzeit: 01.04.2020 - 31.12.2023
Gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt
Art des Projekts: Beteiligung an einem bundesgeförderten Verbund
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode
Gefördert durch: DFG - Exzellenzcluster
Art des Projekts: DFG-Hauptprojekt koordiniert an der Universität Münster
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode
Gefördert durch: DFG - Exzellenzcluster
Art des Projekts: Teilprojekt in DFG-Verbund koordiniert an der Universität Münster

Vorträge zur Publikation

A certified and adaptive RB-ML-ROM surrogate approach for parametrized PDEs
Kleikamp, Hendrik (21.07.2022)
YMMOR - Young Mathematicians in Model Order Reduction, Münster
Art des Vortrags: wissenschaftlicher Vortrag
A certified and adaptive RB-ML-ROM surrogate approach for parametrized PDEs
Kleikamp, Hendrik (16.06.2022)
HCM Workshop: Synergies between Data Science and PDE Analysis, Bonn
Art des Vortrags: wissenschaftlicher Vortrag

Promotionen, aus denen die Publikation resultiert

Parametrized optimal control and transport-dominated problems: Reduced basis methods, nonlinear reduction strategies and data driven surrogates
Promovend*in: Kleikamp, Hendrik | Betreuer*innen: Ohlberger, Mario | Gutachter*innen: Ohlberger, Mario; Breiten, Tobias
Zeitraum: 01.01.2021 - 19.12.2024
Promotionsverfahren erfolgt(e) an: Promotionsverfahren an der Universität Münster