Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption

Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Background: Artificial intelligence (AI) applications that utilize machine learning are on the rise in clinical research and provide highly promising applications in specific use cases. However, wide clinical adoption remains far off. This review reflects on common barriers and current solution approaches. Summary: Key challenges are abbreviated as the RISE criteria: Regulatory aspects, Interpretability, interoperability, and the need for Structured data and Evidence. As reoccurring barriers of AI adoption, these concepts are delineated and complemented by points to consider and possible solutions for effective and safe use of AI applications. Key Messages: There is a fraction of AI applications with proven clinical benefits and regulatory approval. Many new promising systems are the subject of current research but share common issues for wide clinical adoption. The RISE criteria can support preparation for challenges and pitfalls when designing or introducing AI applications into clinical practice.

Details zur Publikation

FachzeitschriftVisceral Medicine (Visc Med)
Jahrgang / Bandnr. / Volume36
Ausgabe / Heftnr. / Issue6
Seitenbereich443-449
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1159/000511930
Link zum VolltextISI:000598157000004
StichwörterAI; Artificial intelligence; CANCER; CLASSIFICATION; Clinical decision support; DATA QUALITY; DECISION-SUPPORT-SYSTEMS; Deep learning; DIABETIC-RETINOPATHY; INTEGRATION; Machine learning; neural networks; Precision medicine

Autor*innen der Universität Münster

Meidt, Alexandra
Institut für Medizinische Informatik
Varghese, Julian
Institut für Medizinische Informatik