Blobbed topological recursion of the quartic Kontsevich model II: Genus=0

Hock, Alexander; Wulkenhaar, Raimar; Dołega, Maciej (appendix)

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We prove that the genus-0 sector of the quartic analogue of the Kontsevich model is completely governed by an involution identity which expresses the meromorphic differential ω0,n at a reflected point ιz in terms of all ω0,m with m≤n at the original point z. We prove that the solution of the involution identity obeys blobbed topological recursion, which confirms a previous conjecture about the quartic Kontsevich model.

Details zur Publikation

FachzeitschriftAnnales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions (AIHPD)
Jahrgang / Bandnr. / Volumeonline first
Statusakzeptiert / in Druck (unveröffentlicht)
Veröffentlichungsjahr2024 (22.07.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.4171/AIHPD/198
Link zum Volltexthttps://arxiv.org/abs/2103.13271
Stichwörter(Blobbed) Topological recursion; Meromorphic forms on Riemann surfaces; Residue calculus; Involution; Partitions of sets

Autor*innen der Universität Münster

Hock, Alexander
Mathematisches Institut
Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)