Keil Tim, Ohlberger Mario
Forschungsartikel (Buchbeitrag) | Peer reviewedProjection based model order reduction has become a mature technique for simulation of large classes of parameterized systems. However, several challenges remain for problems where the solution manifold of the parameterized system cannot be well approximated by linear subspaces. While the online efficiency of these model reduction methods is very convincing for problems with a rapid decay of the Kolmogorov n-width, there are still major drawbacks and limitations. Most importantly, the construction of the reduced system in the offline phase is extremely CPU-time and memory consuming for large scale and multi scale systems. For practical applications, it is thus necessary to derive model reduction techniques that do not rely on a classical offline/online splitting but allow for more flexibility in the usage of computational resources. A promising approach with this respect is model reduction with adaptive enrichment. In this contribution we investigate Petrov-Galerkin based model reduction with adaptive basis enrichment within a Trust Region approach for the solution of multi scale and large scale PDE constrained parameter optimization.
Keil, Tim | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) Institut für Analysis und Numerik |
Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) Center for Nonlinear Science (CeNoS) Center for Multiscale Theory and Computation (CMTC) (CMTC) |
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode Gefördert durch: DFG - Exzellenzcluster Art des Projekts: DFG-Hauptprojekt koordiniert an der Universität Münster | |
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode Gefördert durch: DFG - Exzellenzcluster Art des Projekts: Teilprojekt in DFG-Verbund koordiniert an der Universität Münster | |
Laufzeit: 01.01.2019 - 30.06.2023 Gefördert durch: DFG - Sachbeihilfe/Einzelförderung Art des Projekts: Gefördertes Einzelprojekt |
Adaptive Reduced Basis Methods for Multiscale Problems and Large-scale PDE-constrained Optimization Promovend*in: Keil, Tim | Betreuer*innen: Ohlberger, Mario | Gutachter*innen: Ohlberger, Mario; Volkwein, Stefan Zeitraum: 01.03.2018 - 22.06.2022 Promotionsverfahren erfolgt(e) an: Promotionsverfahren an der Universität Münster |