Model Reduction for Large Scale Systems

Keil Tim, Ohlberger Mario

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

Projection based model order reduction has become a mature technique for simulation of large classes of parameterized systems. However, several challenges remain for problems where the solution manifold of the parameterized system cannot be well approximated by linear subspaces. While the online efficiency of these model reduction methods is very convincing for problems with a rapid decay of the Kolmogorov n-width, there are still major drawbacks and limitations. Most importantly, the construction of the reduced system in the offline phase is extremely CPU-time and memory consuming for large scale and multi scale systems. For practical applications, it is thus necessary to derive model reduction techniques that do not rely on a classical offline/online splitting but allow for more flexibility in the usage of computational resources. A promising approach with this respect is model reduction with adaptive enrichment. In this contribution we investigate Petrov-Galerkin based model reduction with adaptive basis enrichment within a Trust Region approach for the solution of multi scale and large scale PDE constrained parameter optimization.

Details zur Publikation

Herausgeber*innenLirkov Ivan, Margenov Svetozar
BuchtitelLarge-Scale Scientific Computing
Seitenbereich16-28
VerlagSpringer International Publishing
ErscheinungsortCham
Titel der ReiheLecture Notes in Computer Science (LNCS)
Nr. in Reihe13127
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
ISBN978-3-030-97549-4
DOI10.1007/978-3-030-97549-4_2
Link zum Volltexthttps://doi.org/10.1007/978-3-030-97549-4_2
StichwörterPDE constraint optimization; reduced basis method; trust region method

Autor*innen der Universität Münster

Keil, Tim
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Institut für Analysis und Numerik
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)