The Scharfetter–Gummel scheme for aggregation–diffusion equations

Schlichting André, Seis Christian

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this paper we propose a finite-volume scheme for aggregation-diffusion equations based on aScharfetter-Gummel approximation of the quadratic, nonlocal flux term. This scheme is analyzedconcerning well posedness and convergence towards solutions to the continuous problem. Also, it isproven that the numerical scheme has several structure-preserving features. More specifically, it is shownthat the discrete solutions satisfy a free-energy dissipation relation analogous to the continuous model.Consequently, the numerical solutions converge in the large time limit to stationary solutions, for whichwe provide a thermodynamic characterization. Numerical experiments complement the study.

Details zur Publikation

FachzeitschriftIMA Journal of Numerical Analysis (IMA J. Numer. Anal.)
Jahrgang / Bandnr. / Volume42
Ausgabe / Heftnr. / Issue3
Seitenbereich2361-2402
StatusVeröffentlicht
Veröffentlichungsjahr2021 (18.05.2021)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1093/imanum/drab039
Link zum Volltexthttps://doi.org/10.1093/imanum/drab039
Stichwörterfinite volume scheme; aggregation–diffusion equation; structure preserving; free-energy; dissipation relation; convergence; large time limit

Autor*innen der Universität Münster

Schlichting, André
Professur für Angewandte Mathematik (Prof. Schlichting)