First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: Model derivation and realizability theory

Schneider Florian, Leibner Tobias

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We provide two new classes of moment models for linear kinetic equations in slab and three-dimensional geometry. They are based on classical finite elements and low-order discontinuous-Galerkin approximations on the unit sphere. We investigate their realizability conditions and other basic properties. Numerical tests show that these models are more efficient than classical full-moment models in a space-homogeneous test, when the analytical solution is not smooth.

Details zur Publikation

FachzeitschriftJournal of Computational Physics (J. Comput. Phys.)
Jahrgang / Bandnr. / Volume416
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.jcp.2020.109547
StichwörterMoment models; Minimum entropy; Kinetic transport equation; Continuous Galerkin; Discontinuous Galerkin; Realizability

Autor*innen der Universität Münster

Leibner, Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)