A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization

Keil T, Mechelli L, Ohlberger M, Schindler F, Volkwein S

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this contribution we propose and rigorously analyze new variants of adaptive Trust-Region methods for parameter optimization with PDE constraints and bilateral parameter constraints. The approach employs successively enriched Reduced Basis surrogate models that are constructed during the outer optimization loop and used as model function for the Trust-Region method. Each Trust-Region sub-problem is solved with the projected BFGS method. Moreover, we propose a non-conforming dual (NCD) approach to improve the standard RB approximation of the optimality system. Rigorous improved a posteriori error bounds are derived and used to prove convergence of the resulting NCD-corrected adaptive Trust-Region Reduced Basis algorithm. Numerical experiments demonstrate that this approach enables to reduce the computational demand for large scale or multi-scale PDE constrained optimization problems significantly.

Details zur Publikation

FachzeitschriftESAIM: Mathematical Modelling and Numerical Analysis
Jahrgang / Bandnr. / Volume55
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1051/m2an/2021019
Link zum Volltexthttps://www.esaim-m2an.org/articles/m2an/abs/2021/04/m2an200123/m2an200123.html
StichwörterPDE constrained optimization; Trust-Region method; error analysis; Reduced Basis method; model order reduction; parametrized systems; large scale problems

Autor*innen der Universität Münster

Keil, Tim
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Institut für Analysis und Numerik
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Institut für Analysis und Numerik