Empirical Study on the Benefits of Multiobjectivization for Solving Single-Objective Problems

Steinhoff Vera, Kerschke Pascal, Grimme Christian

Sonstige wissenschaftliche Veröffentlichung

Zusammenfassung

When dealing with continuous single-objective problems, multimodality poses one of the biggest difficulties for global optimization. Local optima are often preventing algorithms from making progress and thus pose a severe threat. In this paper we analyze how single-objective optimization can benefit from multiobjectivization by considering an additional objective. With the use of a sophisticated visualization technique based on the multi-objective gradients, the properties of the arising multi-objective landscapes are illustrated and examined. We will empirically show that the multi-objective optimizer MOGSA is able to exploit these properties to overcome local traps. The performance of MOGSA is assessed on a testbed of several functions provided by the COCO platform. The results are compared to the local optimizer Nelder-Mead.

Details zur Publikation

StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttps://arxiv.org/abs/2006.14423
StichwörterSingle-Objective Optimization; Multimodality; Multiobjectivization; Continuous Optimization; Local Search

Autor*innen der Universität Münster

Grimme, Christian
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Kerschke, Pascal
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Steinhoff, Vera
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)