A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equationsOpen Access

Leibner T, Ohlberger M

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this contribution we derive and analyze a new numerical method for kinetic equations based on a variable transformation of the moment approximation. Classical minimum-entropy moment closures are a class of reduced models for kinetic equations that conserve many of the fundamental physical properties of solutions. However, their practical use is limited by their high computational cost, as an optimization problem has to be solved for every cell in the space-time grid. In addition, implementation of numerical solvers for these models is hampered by the fact that the optimization problems are only well-defined if the moment vectors stay within the realizable set. For the same reason, further reducing these models by, e.g., reduced-basis methods is not a simple task. Our new method overcomes these disadvantages of classical approaches. The transformation is performed on the semi-discretized level which makes them applicable to a wide range of kinetic schemes and replaces the nonlinear optimization problems by inversion of the positive-definite Hessian matrix. As a result, the new scheme gets rid of the realizability-related problems. Moreover, a discrete entropy law can be enforced by modifying the time stepping scheme. Our numerical experiments demonstrate that our new method is often several times faster than the standard optimization-based scheme.

Details zur Publikation

FachzeitschriftESAIM: Mathematical Modelling and Numerical Analysis
Jahrgang / Bandnr. / Volume55
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1051/m2an/2021065

Autor*innen der Universität Münster

Leibner, Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC) (CMTC)

Projekte, aus denen die Publikation entstanden ist

Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode
Gefördert durch: DFG - Exzellenzcluster
Art des Projekts: DFG-Hauptprojekt koordiniert an der Universität Münster
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode
Gefördert durch: DFG - Exzellenzcluster
Art des Projekts: Teilprojekt in DFG-Verbund koordiniert an der Universität Münster
Laufzeit: 01.01.2019 - 31.12.2025 | 1. Förderperiode
Gefördert durch: DFG - Exzellenzcluster
Art des Projekts: Teilprojekt in DFG-Verbund koordiniert an der Universität Münster

Promotionen, aus denen die Publikation resultiert

Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition
Promovend*in: Leibner, Tobias | Betreuer*innen: Ohlberger, Mario
Zeitraum: bis 13.04.2021
Promotionsverfahren erfolgt(e) an: Promotionsverfahren an der Universität Münster