Interactive Visual Analysis of Mass Spectrometry Imaging Data Using Linear and Non-linear Embeddings.

Jawad M, Soltwisch J, Dreisewerd K, and Linsen L.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Mass Spectrometry Imaging (MSI) is an imaging technique used in analytical chemistry to study the molecular distribution of various compounds at a micro-scale level. For each pixel, MSI stores a mass spectrum obtained by measuring signal intensities of thousands of mass-to-charge ratios (m/z-ratios), each linked to an individual molecular ion species. Traditional analysis tools focus on few individual m/z-ratios, which neglects most of the data. Recently, clustering methods of the spectral information have emerged, but faithful detection of all relevant image regions is not always possible. We propose an interactive visual analysis approach that considers all available information in coordinated views of image and spectral space visualizations, where the spectral space is treated as a multi-dimensional space. We use non-linear embeddings of the spectral information to interactively define clusters and respective image regions. Of particular interest is, then, which of the molecular ion species cause the formation of the clusters. We propose to use linear embeddings of the clustered data, as they allow for relating the projected views to the given dimensions. We document the effectiveness of our approach in analyzing matrix-assisted laser desorption/ionization (MALDI-2) imaging data with ground truth obtained from histological images.

Details zur Publikation

FachzeitschriftInformation
Jahrgang / Bandnr. / Volume11
Ausgabe / Heftnr. / IssueTrends and Opportunities in Visualization and Visual Analytics
Seitenbereich575-596
StatusVeröffentlicht
Veröffentlichungsjahr2020 (09.12.2020)
Sprache, in der die Publikation verfasst istEnglisch
Link zum Volltexthttps://www.mdpi.com/2078-2489/11/12/575
StichwörterInteractive visual analysis; mass spectrometry imaging; linear embeddings; non-linear embeddings; dimensionality reduction; multidimensional data projections; coordinated views

Autor*innen der Universität Münster

Jawad, Muhammad
Professur für Praktische Informatik (Prof. Linsen)